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a b s t r a c t

There has been some work, e.g. Carriere (1998), Valdez (2000b), and Valdez (2001), leading to the
development of statisticalmodels in understanding themortality pattern of terminatedpolicies. However,
there is a scant literature on the empirical evidence of the true nature of the relationship between
survivorship and persistency in life insurance.When a life insurance contract terminates due to voluntary
non-payment of premiums, there is a possible hidden cost resulting from mortality antiselection. This
refers to the tendency of policyholders who are generally healthy to select against the insurance company
by voluntarily terminating their policies. In this article, we explore the empirical results of the survival
pattern of terminated policies, using a follow-up study of the mortality of those policies that terminated
from a portfolio of life insurance contracts. The data has been obtained from amajor insurer which traced
the mortality of their policies withdrawn, for purposes of understanding the mortality antiselection,
by obtaining their dates of death from the Social Security Administration office. Using a representative
sample of this follow-up data, we modeled the time until a policy lapses and its subsequent mortality
pattern. We find some evidence of mortality selection and we consequentially examined the financial
cost of policy termination.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction and literature

A life insurance contract is one very unique and complicated
consumer product to put a price tag on. By the very nature of the
product, its price has to be determined even before its actual un-
derlying cost can be accurately assessed. Although actuaries re-
sponsibly predict the cost, it certainly can take several years before
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its ultimate price can indeed be determined. When determining a
premium to assess for the product, the actuary makes its best esti-
mate according to factors that directly affect the cost of the product
including, but not limited to, the level and pattern of benefits, pol-
icy features and guarantees, expected returns on investments, and
expenses. Some assumptions about mortality pattern and policy
termination, togetherwith the uncertainties and possible resulting
variabilities associated with them, will additionally be required in
the calculation of a premium. See Atkinson and Dallas (2000).

However, additional to this already complicated factors and as-
sumptions is the consideration of the effect of policyholder behav-
ior. One school of thought asserts that buyers of insurance products
behave or react differently in the presence of insurance coverage.
See Kunreuther et al. (2013). Whether consumers act rational or
not in the presence of insurance, it is a widely accepted perception
that there is an asymmetry of information in the insurance mar-
ket. Under several circumstances, the insurer does not often have
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Fig. 1. Illustrative diagram of the observed times until withdrawal and death.

all the available information to accurately underwrite the level of
risks of potential policyholders. Nevertheless, the insurer relies on
the pooling of risks based on the assumption that there will be a
large enough number of homogeneous risks so that the expected
aggregate cost of insurance can be determined with reduced vari-
ability. The presence of asymmetric information has the potential
to distort this homogeneitywithin the group and the resulting ten-
dency is the pooling of more risks considered ‘‘worse’’ than the
average risk. See, for example, the illustration of Bluhm (1992) in
the case of health insurance policies. Several undesirable conse-
quences of policyholder behavior may be mitigated so long as the
insurer practices prudent risk management.

In this paper, we focus on policy termination together with un-
derstanding the survivorship pattern resulting from terminated
policies. Our observable data is an extract from a real life data of a
portfolio of terminated life insurance policies from an undisclosed
insurance carrier which tracked the mortality dates of these poli-
cies from the US Social Security Administration office. The primary
purpose of obtaining such information is to first understand the
relationship between policy termination and mortality, and later,
more importantly, to assess the financial implication of this rela-
tionship in the design, pricing and risk management of insurance
products. These terminated policies are as of a fixed date, hereby
undisclosed to preserve some level of confidentiality. The recorded
death date information is also as of this same fixed date which is
then considered the censoring date used in our model calibration.
Our data file also recorded period around 1920s as the year with
the earliest policy issue date in the portfolio. On the aggregate, we
have observations totaling to 65,435 terminated single life policies,
discarding joint life policies for purposes of our analysis. This set
of observations that we use for model calibration in this paper is
only a randomsub-sample from the insurer’s portfolio used in their
analysis.

The type of observations in our empirical data is vividly illus-
trated in Fig. 1. According to this figure, we observe two distinctly
classified policyholders, herewith labeled policyholders 1 and 2,
where in both cases, we observe the times when each withdraw
their policy out of the insurance company. Policyholder 1 dies be-
fore the end of the observation period and therefore we can ob-
serve its time from withdrawal until time of death. On the other
hand, policyholder 2 is still alive at the end of the observation pe-
riod and is therefore clearly considered a right-censored observa-
tion.

Given a policy is issued at a fixed and known age, denote this
by z, we are interested in estimating the probability distribution
of the time-until-withdrawal and the time-until-death from issue.
Denote these times to events, respectively, by the random variates
Tw and Td, and define the difference as Twd = Td − Tw . Our data
file allows us to observe Tw and the conditional random variate
Twd|Tw , or effectively Td|Tw since (Twd|Tw) = (Td|Tw) − Tw . For no-
tation purposes, we can express T ∗

wd = Twd|Tw and Td|w = Td|Tw .
Notice that because not all policies were followed up until their
times of death, censoring is therefore present and the observable
Td is therefore calculated as of the censoring date, as previously
explained, and a censoring variable is recorded for each of the
policies in the portfolio. These are indeed called right-censored
observations which are typical in mortality studies. See, for exam-
ple, Elandt-Johnson and Johnson (1980). Of our entire observations,
we found that we have a total of 61,889 right-censored observa-
tions. Slightly over 5% of our observations are deaths, something
not atypical of mortality follow-up studies.

Understanding, recognizing andmeasuring the relationship be-
tween policy termination and survivorship in a life insurance port-
folio can be of considerable importance to actuaries with pricing,
reserving and risk management responsibilities. This interconnec-
tion between termination and survivorship is something called
in the insurance literature as mortality selection. This selection
roughly produces an unbalancedmixture of low and highmortality
risks which could have a spiraling effect on the insurer’s portfolio
of policies. Policyholders who terminate their policies are believed
to have better mortality risks than those who remain; these pol-
icyholders are able to seek coverage elsewhere at possibly better
premium rates. On the other hand, those who remain will have the
effect of aworsemortality pattern thanwould have been originally
anticipated creating a circumvolved early death claims. See the
monograph published by Munich RE on how life insurance com-
panies may combat such selection; see Donnelly (2011).

The extent of the probable damage caused by mortality selec-
tion will vary according to the nature and type of the life insurance
product. For instance, in a traditional whole life insurance, the con-
sequences could range from low to unmanageably high. Possible
factors that contribute to this extent include the permanent long
term nature of the commitment where the periodic payment of
the premium is fixed at issue; policy alteration may be possible
but within contractual constraints. Furthermore, this relationship
may be more important in the life settlement business which as of
late has turned into a multi-billion dollar industry. With life set-
tlements, life insurance contract holders have the option of selling
their policies to third party investors in the capitalmarket, in lieu of
terminating their policies. Such an arrangement has the potential
financial attractiveness both to the policyholder and the investor.
See, for example, Doherty et al. (2002) andVadiveloo (2005). In this
type of market, the investors would be interested in the survivor-
ship patterns of these potentially terminating policies. The typical
pricing approach for life settlement policies is to assume that the
insured lives will have impaired mortality. This is a contrast to the
mortality selection you would expect from a portfolio of ordinary
life insurance policies. Finally, the recognition of the relationship
between termination and survivorship is probably more impor-
tantly pronounced in lapse-supported products, something more
common in Canada introduced in the early 1980s. See Tullis and
Polkinghorn (1992). Pricing for lapse-supported products is very
sensitive to the assumption of the proportions of policyholders ter-
minating their policies; these are policies that provide long term
commitments without the attraction of a cash surrender value at
policy termination.

It is an unfortunate situation that there is a scant research work
published in the literature about the true nature of the relationship
between policy termination and survivorship. This is not to say
that researchers and practitioners do not recognize its relevance,
indeed far from it. In practice, the common method is to select
average mortality and lapse rates, on the ‘‘aggregate’’ as Jones
(1998) points out, applied to a class of contracts and policyholders.
The aggregation, of course to the extent it is measurable, may vary
according to the heterogeneous characteristics of the policyholders
within a portfolio. Mortality impairment in subsequent periods is
then reflected through the use of excess lapse rates for renewed
policies. See also Dukes and MacDonald (1980). This approach is
quite commonplace and recommended in reserving guidelines for
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annually renewable term policies, where the impact of selective
lapsation is believed to bemore pronounced; see for example, NAIC
Actuarial Guideline XXX applicable for term insurance products.

In the research front, there has been some advances to suggest
theoretical approaches in analyzing the relationship between
mortality and lapsation. Jones (1998) recommended the use of
‘‘frailty’’ concept to account for the heterogeneity resulting from
this relationship within a multi-state framework. Sigalotti (1988)
suggested a Bayesian framework to possibly account for the
‘‘correlation between mortality and withdrawal’’. Carriere (1998)
analyzed the impact of withdrawal benefits, in the presence of
mortality anti-selection, within a double decrement framework.
He demonstrated thatwhenmortality andwithdrawal decrements
are independent, the withdrawal benefit should be the policy
reserve, but should be much smaller in the presence of anti-
selection. A nice follow up to the work of Carriere (1998), Valdez
(2001) suggested the use of a ‘‘copula’’ framework to examine
and quantify the effect of anti-selection. A more recent interesting
work is that by DeGiovanni (2010) which capitalizes on the use of
financial options theory to model policyholder behavior in much
the same fashion as exercising American options.

Regrettably, there is little or no research work in circulation to
calibrate these models in order to statistically support empirical
evidence. There are several reasons for this. One is understandably
the difficulty of academic researchers to obtain real life data to cal-
ibrate possibly hypothetical models. In effect, as a creative proxy,
some obtain readily available published data to tweak the research
issue originally raised and to focus on understanding relationships
based on the available information. To illustrate, for example, the
work of Tsai et al. (2002) used data that comes in the form of a time
series of various macro-economic variables to incorporate the em-
pirical relation between lapse and interest rates, and to examine
the impact of this relationship on policy reserves. In addition, by
the very nature of the problem of understanding the relationship
between policy lapses and deaths, even observable data from the
insurance company under several circumstances canmake the cal-
ibration really difficult. The intuition here is that no insurance com-
pany is able to track the mortality pattern of terminated contracts.
Such problem is often referred to in statistics as ‘‘model identifia-
bility’’ but there are ways to circumvent around this issue includ-
ing, but not limited to, the tightening and sharpening of the model
specification.

Our approach, in this paper, can be considered more novel
than several of these published research works. The nature of our
observed data allows us to calibratemodels at amicro-level,mean-
ing observations are at the policyholder level. Many actuarial
models are developed based on grouped data, but there is more
information obtained at a micro-level allowing us to better reflect
reality. With micro-level data becoming more available especially
to practitioners, there is an increasing trend of developing micro-
econometric models, a term used for example by Gourieroux and
Jasiak (2007). Next, we use a general class of duration models to
specify the parametric distribution of the time-until-withdrawal,
Tw , from issue date. This class falls within the general framework
of regression models for which the distribution of the error com-
ponent can in some sense be arbitrarily specified. Not only is this
class of models very tractable, but they apparently allows us to in-
corporate covariate terms within which in our context are policy-
holder characteristics such as gender, issue age, and product type.
Duration models are commonly used in the field of econometrics,
e.g. Gourieroux and Jasiak (2007) and Lancaster (1990). We find
that for our data, the most suitable duration model for Tw is one
where the error component follows a standard Gamma distribu-
tion, and we shall observe later that this indeed results in a Gener-
alized Gamma distribution specification for Tw . Other parametric
error distributions were also examined but these models provided
weak statistical support to the data.
In examining parametric models for the time-until-death,
conditionally on observing the time-until-withdrawal, Td|w , we
find that the best approach is to directly specify the distribution
model for this random variate. According to our analysis, we
find that the Gompertz model, something long well-known to
actuaries, fits our survival data very well. This specification also
allows us to incorporate issue age directly to the model, as well
as gender through the parameters. It is widely known that survival
deteriorates with age and that females live longer; both of these
preconceived notions are reflected in our estimated models. We
also investigated other observed characteristics, e.g. plan types and
face amounts, that may explain the heterogeneous nature of the
survival pattern among our observations; we found that many of
these are not statistically significant. For comparative purposes and
in probing the robustness of our models, we considered several
other classes of survival models; not to overwhelm the reader,
we only report in this article the second best model which is the
Weibull.

Finally, once we have calibrated the parameters in the respec-
tive models for Tw and Td|w , straightforward statistical results
allow us to specify the unconditional distribution for the time-
until-death, Td. Consequently, this offers us the ability to make a
comparison of survival patterns between the conditional random
variate Td|w and the unconditional random variate Td to provide us
an understanding of possible evidence of mortality anti-selection.
Using the definition of mortality anti-selection used in Valdez
(2001) and in Carriere (1998),we are able to assess for the presence
of this anti-selection. Finally, by examining a hypothetical insur-
ance portfolio, we additionally assess the financial impact of this
anti-selection. See also Valdez (2000b).

The structure of this paper is as follows. Section 2 introduces
the class of duration models with direct specification of the
error distribution within a regression framework. Here, we give
as examples large families of regression models including the
ordinary regression model where the error component is assumed
to have Normal distribution. This section also discusses the
Gompertz, together with the Weibull model, for modeling the age
at death random variate. Section 3 provides a discussion of the
characteristics of the data, together with results of preliminary
statistical analysis which traversed us to our model choices.
Section 4 provides the results and analysis of calibrating the
models. Section 5 explains how thesemodels are used to assess the
presence of mortality antiselection together with a consideration
of quantifying to understand the financial impact of thesemortality
antiselection. We conclude in Section 6.

2. Parametric models

2.1. A class of duration models for time-until-withdrawal

Consider the time-until-withdrawal random variate, Tw , refer-
ring to the duration that the policyholder lapses from date of issue,
which clearly has a range of non-negative values. We shall denote
its survival, distribution and density functions by Sw , Fw and fw , re-
spectively. These functions are related, for example, as follows:

Sw(t) = P(Tw > t) = 1 − Fw(t) =


∞

t
fw(s)ds.

Suppose that we can write Tw as

Tw = exp(µ)T σ
0 , (1)

for some non-negative random variate T0. By re-writing (1)
through the log-transformation

log(Tw) = µ + σ log(T0) = µ + σΛ, (2)
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where Λ = log(T0), we observe that µ is a location parameter and
σ is a scale parameter with the restriction that σ ≠ 0 in order to
avoid a degenerate distribution for Tw . Because we can write the
survival function of Tw as

Sw(t) =


SΛ


log(t) − µ

σ


, for σ > 0

1 − SΛ


log(t) − µ

σ


, for σ < 0

(3)

where SΛ denotes the survival function of Λ, the distribution of Tw

indeed belongs to a log-location-scale family of distributions.
Covariates can be introduced through the location parameterµ.

Suppose x is a vector of covariates, such as policyholder character-
istics, and β , the corresponding vector of linear coefficients. Then
we can simply replace µ = x′β . For example, (1) becomes

Tw = exp(x′β)T σ
0 , (4)

and (2) becomes

log(Tw) = x′β + σ log(T0) = x′β + σΛ, (5)
which generalizes the familiar ordinary regression model where
the error component has a Normal distribution. The specification
in (4) is also a special case of the Accelerated Failure Time (AFT)
model commonly studied in survival models. See Elandt-Johnson
and Johnson (1980).

It is also straightforward to find the distribution of Tw in terms
of the distribution of T0. The survival distribution function of Tw

can be expressed as

Sw(t) = S0

(e−µt)1/σ


(6)

and its density as

fw(t) =
1

|σ |t
(e−µt)1/σ f0


(e−µt)1/σ


, (7)

where S0 and f0 are respectively the survival and density functions
of T0. Within this class of models, it is oftentimes more straightfor-
ward to specify the distribution of T0 rather than of its logarithm.

Example 1 (Log-Normal Distribution).As an illustration, in the case
where T0 has a log-normal distribution with parameters 0 and 1, it
can be shown that

fw(t) =
1

√
2πσ t

exp


−

1
2


log(t) − µ

σ

2


(8)

which also gives Tw a log-normal distribution with parameters µ
and σ , where σ > 0. This distribution is well-studied both in
finance and actuarial science.

Example 2 (Generalized Gamma Distribution). Here, we suppose
that T0 has a standard Gamma distribution, i.e. one where the scale
parameter is 1 butwith a shape parameterm so that its density can
be expressed as

f0(y) =
1

Γ (m)
ym−1e−y.

It can be shown that

fw(t) =
1

|σ |t
1

Γ (m)
(e−µt)m/σ exp


−(e−µt)1/σ


. (9)

This gives a large class of distributions called the Generalized
Gamma with parameter vector (µ, σ ,m). For a member of this
class, we shall write it as Tw ∼ GG(µ, σ ,m). This family of dis-
tributions which is often attributed to Stacy (1962), includes as
special cases the Gamma, Exponential, Log-Normal and Weibull
distributions. Despite its flexibility, this family of distribution is
less-studied in finance and actuarial science.
Example 3 (GB2 Distribution). Here, we suppose that T0 has a Beta
of the second kind (B2) distribution whose density is expressed as

f0(y) =
1

B(γ1, γ2)

yγ1−1

(1 + y)γ1+γ2
.

This type of distribution is sometimes called the standard form of
a Pearson Type VI distribution, see Johnson et al. (1995). It can be
shown that

fw(t) =
1

|σ |t
1

B(γ1, γ2)

(e−µt)γ1/σ
1 + (e−µt)1/σ

γ1+γ2
. (10)

This gives a large class of distributions called the GB2, or Gen-
eralized Beta of the second kind, with parameter vector (µ, σ ,
γ1, γ2). For a member of this class, we shall write it as Tw ∼

GB2(µ, σ , γ1, γ2). This family of distributions was first studied
by McDonald (1984) and has been applied in modeling insurance
claims, e.g. Cummins et al. (1990). As pointed out by Sun et al.
(2008), it is well suited for fitting heavy-tailed data.

2.2. Survival models for the age at death random variable

Denote the (fixed) issue age by z and let Xd be the age at death
random variable so that

Xd|z = z + Tw + (Td − Tw) = z + Tw + Twd,

provided Twd > 0. Thus, if Tw is known, then

(Xd|z, Tw = tw) = z + tw + Twd.

Thus, it becomes clear that

P(Twd > twd|z, Tw = tw) = P(Td > Tw + twd|z, Tw = tw)

=
P(Xd > z + tw + twd)

P(Xd > z + tw)

=
Sd(z + tw + twd)

Sd(z + tw)
.

(11)

Here, Sd refers to the corresponding survival distribution function
of the age at death, Xd, random variable. That is, Sd(x) = P(Xd > x).
Driven by the observable data, we need to specify the distribution
model for Twd, given the issue age z and the time-until-withdrawal
tw . According to (11), this is equivalent to specifying the distri-
bution model for the age at death random variable Xd. While we
have examined several survival models for the age at death, the
two models, both of which are commonly known to actuaries, are
the Gompertz and the Weibull distributions.

Example 1 (Gompertz Distribution). For the Gompertz distribution,
we write its survival function in the form

Sd(x) = exp

e−m∗/σ∗


1 − ex/σ

∗


, (12)

where m∗ > 0 is the mode and σ ∗ > 0 is a dispersion measure
about this mode of the distribution. This reparameterization has
been suggested by Carriere (1992) and is being used here both for
ease of parameter interpretation and estimation. By re-expressing
the parameters with

B =
1
σ ∗

exp(−m∗/σ ∗) and c = exp(1/σ ∗), (13)

it leads us to the hazard function

µx =
fd(x)
Sd(x)

= Bcx.

This simple expression is quite familiar to actuaries and has been
well-studied in the actuarial literature. See, for example, Gompertz
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Table 1
Some other parametric survival distribution models.

Distribution Survival function Sd(x) Force of mortality µx

Exponential exp(−µx) µ

Inverse-Gompertz
1−exp


−e(x−m)/σ


1−exp(−em/σ )

1
σ
exp

 x−m
σ


Inverse-Weibull 1 − exp


−(x/m)−m/σ


(1/σ)(x−m)−(m/σ)−1

exp[(x/m)−m/σ ]−1

(1825), Carriere (1992), Frees et al. (1996), and Bowers et al. (1986).
There is an additional interesting property of the Gompertz model
thatmay allow us to take advantage of especially when graphically
examining candidate models for survival data. Consider the prob-
ability that an individual, now age x, will survive another year:

px =
Sd(x + 1)
Sd(x)

= exp

e(x−m∗)/σ∗

(1 − e1/σ
∗

)

. (14)

It becomes rather straightforward to see that log(log(px)) is linear
in age x, that is,

log(log(px)) = a + bx, (15)

where clearly a = log(1 − e1/σ
∗

) − (m∗/σ ∗) and b = 1/σ ∗.
See Valdez (2000a).

Example 2 (Weibull Distribution). Here, we express the Weibull
survival distribution as

Sd(x) = exp

−(x/m∗)m

∗/σ∗

. (16)

The parameters m∗ > 0 and σ ∗ > 0 are respectively location
and dispersion parameters. While this reparameterization has
been suggested by Carriere (1992) in the actuarial literature, this
distribution is even more widely familiar in survival analysis and
reliability theory. Conducting a preliminary investigation of the
possible quality of aWeibull model to a survival data is sometimes
done visually using the so-calledWeibull plot. It can be shown that

log(− log(Sd(x))) = (−m∗/σ ∗) log(m∗) + (−m∗/σ ∗) log(x)

= c + d log(x), (17)
where c = (−m∗/σ ∗) log(m∗) and d = −m∗/σ ∗, and is clearly
linear in the logarithm of x. Thus, the Weibull plot is the scatter
plot of log(− log(Sd(x))) against log(x).

For either the Gompertz or Weibull model, we injected observ-
able covariate characteristics through either (or both) the location
parameter m∗ or the scale parameter σ ∗.

In order to investigate the robustness of the models, other
parametric survival models were examined but we found that
these did not adequately fit our data. For comprehensive purpose,
especially for readers who wish to investigate such other models,
we make a list of some in Table 1. As a matter of fact, it has also
been suggested in both Carriere (1992) and Valdez (2000a) that
mixing some of these survival models provide a better quality fit
of survival data over the entire human lifetime.

3. Data characteristics

In our empirical investigation in this article, we analyzed data
drawn from a major insurer’s portfolio of terminated single life
insurance contracts with mortality dates tracked from the US
Social Security Administration office. On the aggregate, we drew a
randomly selected sub-sample of 65,435 such terminated policies;
although the sub-sampling algorithm used results in a random
sample, we carefully made the draw in order to preserve the
overall characteristics of the insurer’s portfolio. To begin, we have
three main product classifications herewith labeled PlanTypeP,
PlanTypeT and PlanTypeO. PlanTypeP consisted of the traditional
participating whole life insurance policies and is approximately
42.4% of the entire sample. PlanTypeP consisted of traditional
term insurance products and is approximately 28.0% of the entire
sample. For the rest, approximately 29.6%, are PlanTypeO which
primarily consisted of conventional Universal Life, although we
have very little policies that were term conversion which were
grouped into this classification. Term conversion policies are
those initially purchased as traditional term contracts that later
converted into some form of permanent policies. Similar such
proportions for plan types have been observed from the insurer’s
entire portfolio.
Table 2
Policy characteristics and other observable information.

Categorical variables Description Proportions

PlanType Type of insurance plan: PlanTypeP 42.4%
PlanTypeT 28.0%
PlanTypeO 29.6%

RiskClass Insured’s assigned risk class: RiskClass = N 72.0%
RiskClass = Y 28.0%

Sex Insured’s sex: Male = 1 65.2%
Female = 0 34.8%

Smoker Smoker class: Non-smoker = N 66.6%
Smoker = S 12.4%
Combined = C 21.0%

Censor Censoring indicator for death: Censor = 1 94.6%
Censor = 0 5.4%

Continuous variables Minimum Mean Maximum

IssAge The policyholder’s issue age 0 37.70 89.65
Face Amount The policy’s insured amount 1 213,000 60,000,000
Temp FEAmt Temporary flat extra amount (per 1000) 0.00 0.08 49.00
Perm FEAmt Permanent flat extra amount (per 1000) 0.00 0.06 48.00
MEFact Extra mortality factor 1.00 1.01 4.00

Dates

IssDate Policy effective or issue date
BDate Insured’s date of birth
WDate Policy withdrawal or lapse date
DDate Insured’s date of death, if applicable
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Table 3
Number of policies and average face amount by type of plan, sex and issue age.

Plan Type Issue age Total
Males Females
≤30 30–50 50–70 >70 ≤30 30–50 50–70 >70

PlanTypeP
Count 6,461 8,476 2,300 100 4,401 4,545 1,374 119 27,776
Face Amount 46,766 152,345 139,624 213,028 35,611 103,401 150,228 213,891 100,605
PlanTypeT
Count 1,130 9,557 1,963 20 964 4,262 434 3 18,333
Face Amount 323,955 475,092 653,320 1,461,250 168,350 251,603 408,421 425,833 416,264
PlanTypeO
Count 2,076 7,314 3,091 188 1,516 3,789 1,103 249 19,326
Face Amount 124,896 193,958 203,519 445,704 79,893 133,510 310,929 604,947 181,690
Table 2 provides for a summary of the policy characteristics in
our data together with other interesting observable information
that we later find useful predictor variables.

To illustrate, gender and smoker categories are included in our
data files. It is well known that there are significant mortality
differentials between males and females, with females generally
living longer than males. We have significantly more males in our
data than females, with roughly a ratio of almost 2 to 1. In addition,
because of previous medical studies, it has become an acceptable
premise that smoking does affect mortality. These findings are
again reinforced in the results of our empirical work and our data
have roughly five times more non-smokers than smokers. Finally,
we also have 21% of our observations classified as combined
smoker and non-smoker; these refer to those policies classified as
unismokers. Virtually, unismoker policies refer to those insurance
contracts with premiums rated regardless of smoking habits.

For each contract observed, we have the policy effective or issue
date, the withdrawal date and the date of death, if applicable.
Policies with no observable date of death are considered censored
observations, with a fixed and known censoring date, herewith
being a withheld information to preserve confidentiality. These
dates allow us to measure the duration from issue to policy
withdrawal, and given this duration of withdrawal, the time of
death, if policy is uncensored, or the time from withdrawal till the
censoring date, if policy is censored. Our policy records indicate
61,889 of the total 65,435 observations are censored, representing
about 95% of the policies in the data.

When insurance policies are underwritten prior to issue, the
insurer may find additional or extra hazard, such as certain
lifestyle or past illness, for which the insurer may be willing to
assume but for obviously with a premium differential or extra
cost. Insurers price for these costs with degrees and methods, and
according to our records, ours increases the mortality assumption
in the premium calculation with an extra mortality factor and/or
assesses a flat extra premium on either a temporary or permanent
basis. Several of our policies were priced with little or no extra
hazard. However, for those that were subjected to such premium
differentials, the extra mortality factor used in the premium
calculation ranged from as little as just slightly 1% to as high as
above 400% of that presumably used for standard policies.

Finally, Table 3 provides an interesting summary of the number
of policies together with the average face amounts according
to type of plan, gender and issue age. For this purpose, it was
meaningful to partition issue age according to 4 groups: less than
or equal to 30, between 30 and 50, between 50 and 70, and above
70. Of our total 65,435 policies, we find that the overall average
face amount is $212,992. As earlier noted, roughly a bulk of our
data are PlanTypeP policies. However, it is interesting to note that
PlanTypeT policies tend to have much larger face amounts, with
its average more than 4 times the average of that for PlanTypeP
policies. The overall average face amount for PlanTypeP is 100,606
while it is 416,264 for PlanTypeT policies. For all types of plan,most
Fig. 2. A frequency histogram of the time-until-withdrawal.

issue ages are in the range of 30 through 50 years old, especially so
for PlanTypeT. This could either be the result of the choice of the
policyholder or that of the insurer. By design, term life insurance
products tend to have premiums that exponentially increase with
age so that it is not surprising to find fewer policies in the above
50 age categories. What is a little bit surprising is to find fewer
policies in the younger age categories; such may be the result of
a marketing strategy by our insurer.

Mortality studies for insurance contracts tend to account for the
impact of policy face amount by using them as weights. For our
purposes, because our observations are at the policyholder level,
we used counts butwe do recognize the effect of face amount using
them as a covariate characteristic in our parametric models. This is
much more flexible as it allows us to directly quantify the effect of
any increases in face amount on the survivorship of policyholders.

4. Model calibration results

4.1. Time-until-withdrawal

Prior to fitting the various duration models discussed in Sec-
tion 2.1, we performed preliminary investigation of the observed
distributions of the time-until-withdrawal according to the vari-
ous available classifications (e.g. Plan Type, Sex, etc.). While it be-
comes too cumbersome and possibly even overwhelming to show
the results of this preliminary investigation for all possible classi-
fications, at best we present this analysis by Plan Type. The time-
until-withdrawal has been measured in years from policy issue.

Fig. 2 provides a graphical display of the frequency histogram of
the observed time-until-withdrawal for all 65,435 policies. Broadly
speaking, we find that policyholders do voluntarily terminate
their contracts following the early duration from policy issue.
However, upon inspection by policy type as shown in Fig. 3, there
is apparently a wide variation. First, a greater proportion of term
insurance contracts tends to lapse during the early duration from
policy issue; a possible explanation is the exponential increase in
premium for such contracts. Second, more permanent contracts
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(a) PlanTypeP. (b) PlanTypeT. (c) PlanTypeO.

Fig. 3. A frequency histogram of the time-until-withdrawal by Plan Type.
Table 4
Summary statistics of the time-until-withdrawal.

Plan type Number Min Mean Median Max Std dev

PlanTypeP 27,776 0.08 21.46 14.80 83.75 17.24
PlanTypeT 18,333 0.01 7.34 6.42 70.15 4.83
PlanTypeO 19,326 0.08 10.51 10.62 25.01 6.36

Aggregate 65,435 0.01 14.27 10.01 83.75 13.57

also follow the same pattern but at a much relatively lower rate
than term contracts. There is a greater proportion, though, of such
contracts to lapse in later years; a possible explanation is the cash
value component usually associated with such contracts. Finally,
for other types of contracts which primarily consist of Universal
Life or similar products, there tends to be more a relatively flat
stable proportion of policy lapses across duration; a possible
explanation for this is the tendency of these products to be more
viewed as savings or investment-type products with relatively less
important insurance component.
Table 4 provides basic summary statistics of the time-until-
withdrawal according to Plan Type as well as on the aggregate. On
the aggregate, the earliest policy termination happened to be about
0.01 of a year, or roughly one week from issue. On the other hand,
the latest policy lapse happens after 83.75 years since policy issue.
Observe the variation of the summary statistics by type of plan.

In estimating the model parameters, we use maximum like-
lihood techniques with the log-likelihood function following the
form of

log L(β, θ; tw,i) =

65,435
i=1

log fw(tw,i),

where fw refers to the density function applicable for the time-
until-withdrawal random variable and tw,i refers to the time-until-
withdrawal for the ith observation. Here the vector β refers to the
set of parameters corresponding to the coefficients in the regres-
sion equation for the location parameter µ while θ is the vector of
the rest of the parameters applicable to the fitted model.

We fitted three types of parametric models as discussed in
Section 2.1: the Log-Normal, the Generalized Gamma and the GB2
Table 5
Maximum likelihood estimates for the various duration models of time-until-withdrawal.

Parameter Log-Normal Generalized Gamma GB2

Regression coefficients

β0 (intercept) 2.5534 (0.0263) 1.2138 (0.0419) 3.0034 (0.0238)
β1 (PlanTypeP) −0.4022 (0.0071) −0.1604 (0.0061) −0.1956 (0.0054)
β2 (PlanTypeT) −0.2808 (0.0068) −0.1422 (0.0060) −0.2805 (0.0055)
β5 (RiskClassY) −0.9787 (0.0063) −0.6593 (0.0056) −0.8199 (0.0060)
β6 (Male) 0.0582 (0.0053) 0.0297 (0.0047) 0.0326 (0.0041)
β7 (SmokerN) 0.2388 (0.0079) 0.3641 (0.0065) 0.1258 (0.0063)
β8 (SmokerC) 1.6988 (0.0099) 1.7042 (0.0086) 1.2458 (0.0079)
β10 (Face Amount) −0.0003 (0.0004)* −0.0027 (0.0003) −0.0089 (0.0004)
β11 (Temp FEAmt) 0.0157 (0.0026) 0.0287 (0.0027) −0.0258 (0.0020)
β12 (Perm FEAmt) −0.0104 (0.0028) −0.0167 (0.0023) −0.0306 (0.0024)
β13 (MEFact) −0.1168 (0.0240) −0.6373 (0.0162) −0.1553 (0.0216)
β14 (IssAge) −0.0060 (0.0002) −0.0092 (0.0002) −0.0030 (0.0002)

Model specific parameters

σ 0.6464 (0.0018) 1.2089 (0.0130) 0.2190 (0.0065)
m – 4.5774 (0.0966) –
γ1 – – 0.4303 (0.0168)
γ2 – – 1.2020 (0.0486)

Model fit statistics

Number of observations 65,435 65,435 65,435
Log-likelihood −209,054.1 −206,010.2 −201,199.5
Number of parameters 13 14 15
Akaike information criterion 418,134.19 412,048.47 402,428.96

Notes: a. Face amount is re-scaled in 100,000.
b. Standard errors are in parenthesis.
c. An asterisk * identifies ‘not significant’ at the 5% level.
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(a) Log-normal. (b) Generalized Gamma. (c) GB2.

(d) Log-normal. (e) Generalized Gamma. (f) GB2.

Fig. 4. Comparing the quality of fit of the various duration models of time-until-withdrawal.
distribution models. All three models provide enough flexibility so
as to capture the observed long tailness as visually demonstrated
in Figs. 2 and 3. The estimation of the parameters has been
coded using R and is a straightforward procedure. The calibration
results for the time-until-withdrawal is numerically summarized
in Table 5.

The interpretation of the regression coefficients is rather
straightforward; many of these results also do not vary much by
the choice of the distribution model. For example, upon inspection
of the GB2 model, PlanTypeP and PlanTypeT policies tend to rel-
atively have earlier policy terminations, males tend to lapse later,
older issue ages tend to lapse earlier and those policies that are
subjected to extra hazard with extra mortality cost tend to lapse
earlier.

Fig. 4 provides a graphical display of assessing the quality of
the model fit of the various distribution models. For each of the
three models considered, we display the histogram together with
the parametric fit of the observable errors after taking into account
policy characteristics that make the observations heterogeneous.
To reinforce the quality of this fit, we provide additionally the
corresponding probability–probability (P–P) plots of the observed
residuals from each model considered. We find that both Gener-
alized Gamma and GB2, according to these figures, provide rea-
sonably excellent fit; however, the GB2 appears to be a marginally
better fit and this is further bolstered by the slightly lower AIC cri-
terion measure displayed in Table 5.

4.2. Age at death

Unlike the time-until-withdrawal, preliminary analysis of the
duration from withdrawal till death is much more difficult
to perform because of the presence of the censoring of the
observations. Table 6 provides the frequency distribution of the
mortality status of the policies in the portfolio according to issue
Table 6
Number of policies by issue age, sex and mortality status.

Mortality status

Issue age Survive Death Total

Males
≤30 8,995 672 9,667
30–50 24,341 1,006 25,347
50–70 6,621 733 7,354
>70 239 69 308
Total 40,196 2,480 42,676

Females
≤30 6,532 349 6,881
30–50 12,202 394 12,596
50–70 2,653 258 2,911
>70 306 65 371
Total 21,693 1,066 22,759

age and gender. As shown in this table, there is a strong presence of
censoring on the observations. For example, out of the total 42,676
males in the data, we observe only 2480 actual deaths as at the end
of the observation period; this represents only about 5.8% of the all
males in the data. Similarly, out of the 22,759 females observed, we
have 1066 deaths as at the end of the observation period, and this
represents less than 4.7% of all females in the data. Furthermore,
on the aggregate, we therefore observe only 3546 deaths out of
the total 65,435 observations in the data. This is just about 5.4%
observed deaths in the data.

Maximum likelihood techniques were used to estimate the
parameters in the distribution models for the age at death. As dis-
cussed in Section 2.2,whilewe investigated several other paramet-
ric models, our analysis resulted in a conclusive decision between
the Gompertz andWeibull survivalmodels, both distributionmod-
els of which are familiar distributions to actuaries. Our observable
data, (zi, tw,i, twd,i, δi), consists of the age at issue, the time of with-
drawal, the time of death from withdrawal (if applicable), and a
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(a) Gompertz - Male. (b) Gompertz - Female.

(c) Weibull - Male. (d) Weibull - Female.

Fig. 5. Kaplan–Meier versus fitted survival curves.
censoring variable. The censoring variable δi has a value of 1 if cen-
sored, that is, the policyholder survived to reach the end of the ob-
servation period. Otherwise, it has a value of 0 if the policyholder
died during the observation period. Based on this observable data,
we constructed the log-likelihood using the result in Eq. (11) as
follows:

log L(m∗, σ ∗
; zi, tw,i, twd,i, δi)

=

65,435
i=1


(1 − δi) log

fd(zi + tw,i + twd,i)

Sd(zi + tw,i)

+ δi log
Sd(zi + tw,i + twd,i)

Sd(zi + tw,i)


, (18)

where fd is the corresponding density function for the age at death
random variable.

We attempted to fit covariate information to account for poli-
cyholder heterogeneity similar to that of the time to withdrawal.
However, we found that several of these heterogeneous character-
istics did not significantly affect the pattern of mortality once the
policy lapsed. In addition, we find that therewas no differential be-
tweenmale and female for the locationparameterm∗, but suchwas
not the case for the variability parameter σ ∗. See Table 7. The esti-
mate for m∗ is about 94 years old, both for Gompertz and Weibull
models and was not affected by gender. At first glance, we thought
that the location estimates appear to be quite high may be a lit-
tle bit of a surprising result. However, this has been largely a re-
sult of the censoring of our observations. As initially indicated, we
have only approximately about 5% of our observations that were
not censored; the rest were censored. For the uncensored observa-
tions, that is where deaths were observed, themedian age at death
Table 7
Maximum likelihood estimates for the various survivorship models.

Parameter Gompertz Weibull

m∗ 93.6031(0.1428) 94.2095 (0.1811)
σ ∗ 6.8420 (0.0975) 8.3039 (0.1337)
σ ∗

× Male 0.5206 (0.1161) 0.7507 (0.1481)

Model fit statistics

Number of observations 65,435 65,435
Log-likelihood −18,264.55 −18,433.82
Number of parameters 3 3
Akaike information criterion 36,535.11 36,873.63

is 81 years old and that the 75th percentile is 88 years old. Themax-
imum age at death observed is slightly above 106 years old. For the
censored observations, on the other hand, we found that the me-
dian age at the time of censoring is approximately 57 years old and
the 75th percentile is 65 years old, with a maximum of 108 years
old. All these high ages both for censored and uncensored observa-
tions contributed to the high location estimates.

The quality of the fit between the Gompertz and the Weibull
models can be visualized in Fig. 5. These figures compare
the nonparametric Kaplan–Meier type survival curves against
corresponding parametric survivorship curves with parameters
calibrated from the data. Kaplan–Meier survival curves do account
for the censoring of the observations as in our data. The comparison
here is not only between models but also between males and
females. Broadly speaking, we find that the Gompertz model, for
either the male or female, slightly outperform the Weibull model.
This is not at all surprising considering the nature of our observed
data; it is well known that the Gompertz model explains a large
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part of the exponentially increasing pattern of mortality at very
high ages. Our observed data is derived from an insured group
which consisted, in large sense, of policyholders issued at very high
ages and observed for a long time duration. While it is true that
we have negligibly few policyholders with very young issue ages,
it is quite uncommon to have an insurance coverage at early ages.
However, our average issue age in the data has been about 38 years
old with a 75th percentile of 46 years old. Indeed, surprisingly, we
even have a maximum issue age of approximately 90 years old.
Except possibly under special circumstances, insurers typically do
not actively seek insurance sale within the very old age market. As
can be deduced from Table 6, more than half of the policies have
had issue ages around the range of 30–50 years old. Insurance is
generally viewed as a financial product that provides economic
security against early and premature death particularly for the
head of the household; hence, it is not surprising to find the range
of issue ages in our data.

5. Implications

In order to understand the consequences of our calibratedmod-
els, we examined two material aspects that may be of importance
to actuaries. The first one is a deduction of the presence of mortal-
ity antiselection. The second one is the financial cost of insurance
policy terminations. In this section, we consider these two impli-
cations separately.

5.1. Evidence of the presence of mortality selection

In the life insurance industry, mortality antiselection refers to
the adverse consequences of the imbalance in the portfolio that
may result because policies that do terminate are thosewith better
survival pattern. When there is a presence of antiselection, the in-
surance companymay end upwith the spiraling effect of aworsen-
ing mortality pattern as a result of policy terminations. Insurance
portfolios with worse mortality pattern may have consequences
that can negatively impact both the company’s balance sheet as
well as income statements. Thus, we look for evidence of the pres-
ence of such selection.

In analyzing mortality selection, we define what we meant
by antiselection. We follow the definition, which are equivalent,
considered both in Carriere (1998) and Valdez (2001). We say that
there is presence of antiselection at withdrawal in life insurance if

Sd|w(td|tw) > Sd(td), for every td ≥ tw. (19)

To interpret definition (19), antiselection is evidently presentwhen
the survival pattern of those terminated policies, conditional on
all periods of termination, have generally better unconditional
survival pattern. To look for evidence in our data, we consider a
specific type of a policyholder with the following characteristics:
issue age 35, permanent whole life, a non-smoker, male, face
amount of 250,000, and not-so-riskywith no flat extra charges.We
compare the conditional and unconditional survivorship curves for
this policyholder if he terminates his contract for different years
from issue; herewe considerwithdrawals for years 2, 4, 6, 8, 10, 15,
20 and 30. The result of this comparison is graphically displayed in
Fig. 6.

According to this figure, we clearly find some evidence of mor-
tality antiselection since survivorship of terminated policies are
always above those unconditional survivorship curves for all dura-
tion of policy termination being consider here. While we certainly
can consider an infinitely many more years of policy termination
than those being considered, it would be too overwhelming to the
reader to see this evident. Suffice to say that we investigatedmany
more years of policy termination, and similar pattern has been ob-
served.
An additional interesting observation that can be made from
this figure is the increase in magnitude of the difference between
the two curves as policy withdrawals occur in later years. This
translates to an even stronger presence of antiselection when
policy terminates in later years. This is not at all counterintuitive
because policyholders who have had their insurance contracts for
a longer period would have to seriously consider their greater risk
of mortality as the probability of dying exponentially increases
with age; this is even more evident in the parametric form of the
Gompertz survival curve.

Finally, it is natural to ask whether the differences between the
two survivorship curveswe saw in Fig. 6 are statistically significant.
To further convinced ourselves, we conducted a formal hypothesis
tests based on the Wilcoxon signed-rank sum test to compare
the significance of these differences. This is a nonparametric
hypothesis tests for examining evidence of significant differences
between two related samples, applicably so in this situation. We
found that for early withdrawals, in particular for years 2, 4 and 6,
the differences are not statistically significant at level α = 5%. This
could also be visualized from the graphs. Nevertheless, for policy
terminations in later years, specifically for years 8 and beyond, we
found the differences to be statistically significant at level α = 5%.

5.2. The financial impact of policy termination

To illustrate how we can quantify the financial consequences
of policy terminations, we illustrate this by considering a pol-
icyholder with the same characteristics that was considered in
the previous section: issue age 35, permanent whole life, a non-
smoker, male, face amount of 250,000, and not-so-risky with no
flat extra charges. Two types of expenses were assumed in the cal-
culations:

• acquisition expenses: 80 plus 4.5 per 1000 of death benefit; and
• maintenance expenses: 60 plus 3.5 per 1000 of death benefit.

These assumptions have been somewhat drawn from the expense
study done in Segal (2002) where he estimated both ‘‘the
acquisition and maintenance costs associated with life policies’’.
We refer the reader to this article for details if interested. For
simplification, we assume that death benefit is paid at themoment
of deathwhile premiums,with expenses, occur at a continuous rate
throughout each year. Finally, interest rate used for discounting has
been set at the constant rate of 5% per year.

In order to investigate the financial impact, first we calculated
the premium payable for this policy. We based this calculation on
the actuarial equivalence principle, something typically learned
in a mathematics for life contingencies course. In this case, the
premium has been calculated at the rate of 2010 per annum.

All stochastic components in the calculation process have
been done using simulation. The time-until-withdrawal random
variables were simulated based on the Generalized Gamma family
of distributions. While we said earlier that the GB2 distribution
models appear to be marginally better, for simulation purpose,
the Generalized Gamma family provides more ease in simulation.
The age at death random variables were simulated based on the
Gompertz model. To demonstrate for example how to simulate
from our Gompertz model as specified in Eq. (12), we can use the
inverse transform method. Here, we start with a random number,
say U , and generate a Gompertz lifetime, say T , from the following
equation:

T = σ ∗ log

1 − (log(U))em

∗/σ∗

. (20)

The financial impact is the loss incurred when policy termi-
nates. These loss calculations have been done based on retrospec-
tive principles. See Bowers et al. (1986). In effect, we define the
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(a) Withdrawal 2 years. (b) Withdrawal 4 years.

(c) Withdrawal 6 years. (d) Withdrawal 8 years.

(e) Withdrawal 10 years. (f) Withdrawal 15 years.

(g) Withdrawal 20 years. (h) Withdrawal 30 years.

Fig. 6. Comparing survival curves after policy withdrawal for an issue age 35. The smooth curve gives the survival probabilities conditional from policy termination. The
dashed curve gives the unconditional survival probabilities. The curves are provided for 20 years from policy termination.
loss at policy termination to be the accumulated values of all past
expenses incurred, plus policy reserves, reduced by the accumu-
lated value of all past premiums paid. Once simulations of the ran-
dom components are done, this process of loss calculation is rather
straightforward. We coded the calculations using the R package.
This loss is best summarized, first, with a frequency distribution as
depicted in Fig. 7. The next paragraph gives summary details of the
numerical results.

According to these simulation results, the largest negative loss
is −249,500 and the largest positive loss is 248,000. The mean and
median losses are, respectively, 1223 and −3128. The 25th per-
centile is −26,440 while the 75th percentile is 25,610. There is
about 54% chance that the loss will be negative and about 46% that
the loss is positive. Finally, there is a very slim chance that the loss
will be larger than 200,000 but there is a 3% chance it will be above
150,000.

6. Concluding remarks

In this paper, we conducted an empirical investigation of the
mortality pattern of terminated policies. We drew a random
sample from a follow-up study conducted by a major insurance
company which tracked the death pattern of their portfolio of
insurance policies. We examined andmodeled these life insurance



E.A. Valdez et al. / Insurance: Mathematics and Economics 58 (2014) 138–149 149
Fig. 7. The frequency histogram of the loss at policy termination.

policy terminations together with their survivorship patterns. We
used parametric distribution duration models to calibrate the
data observed on time-until-withdrawal and found that the log-
location scale class of distributions fit our data very well. This
class of distributions is very flexible and is able to accommodate
covariate information, through the location parameter, in order to
account for the apparent heterogeneity in our data.

The more interesting aspect of our work is studying the sur-
vivorship pattern of terminated contracts. The censored nature of
mortality data typically presents a challenge when calibrating the
age at death data. While we investigated several classes of para-
metric mortality distribution models, we narrowed our choice be-
tween the Gompertz and the Weibull survival models. We found
that while both provide quality fit to the data, the Gompertzmodel
appeared tomarginally outperform theWeibullmodel. Just aswith
the class of duration models we investigated for the time-until-
withdrawal, we injected covariate information directly through
the location and scale parameters; however, we found very little
statistical evidence of heterogeneity in the mortality pattern. In-
deed, even surprisingly, gender did not statistically affect the av-
erage age at death, but it did so on the variation of this age at
death.

Furthermore, we examined the actuarial implications of our
model calibration. We found that the data provides support for
evidence of mortality antiselection. This indicates that policies
that do terminate generally tend to have better survivorship
pattern than those who do not. However, we also discovered that
the difference in the survivorship pattern is affected by when
the policy terminates. Generally speaking, there is little or no
statistical significance for early policy terminations, in particular,
for terminations before 6 years from policy issue. Beyond 6 years,
we found stronger evidence of antiselection and this antiselection
increases with later terminations.

Finally, we assessed the financial effect of policy terminations
by examining the loss that would have been incurred when
the policy terminates. The loss usually consists of unrecoverable
expenses incurred at policy issue (it is well known that at policy
issue, acquisition expenses are too large relative to the premium
collected), net premium reserve that is usually released when the
policy terminates, and the loss of future uncollected premiums. To
perform the investigation, we examined a particular policy with
specified characteristics as a case study. We found that there is
about a 50–50 chance of a negative and positive loss when policy
terminates.
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